US009128762B2

a2 United States Patent 10) Patent No.: US 9,128,762 B2
Hulbert et al. 45) Date of Patent: Sep. 8, 2015

(54) PERSISTENT CONTENT IN NONVOLATILE (2013.01); G11C 13/0004 (2013.01); GI1C
MEMORY 15/046 (2013.01); G11C 16/0408 (2013.01);

G11C 2211/5641 (2013.01
(75) Inventors: Jared E Hulbert, Shingle Springs, CA . . . ()
(US); John C Rudelic, Folsom, CA (58) Field of Classification Search
(US); Hongyu Wang, Shanghai (CN) None L .
See application file for complete search history.

(73) Assignee: Micron Technology, Inc., Boise, ID
Uus) (56) References Cited

(*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS

patent is extended or adjusted under 35 4814971 A * 3/1989 Thatte oovvvvorerrroro 714/15
U.S.C. 154(b) by 460 days. 7,136,982 B2* 11/2006 Britt, Jr. 711/170
7,996,638 B2* 82011 Roblesetal. 711/163
(21) Appl. No.: 12/638,950 2003/0041222 Al* 2/2003 Akeyetal. 711/165
2005/0144610 Al* 6/2005 Zenz 717/168
(22) Flled Dec. 15’ 2009 2006/0101192 Al* 5/2006 leavy 711/103
* cited by examiner
(65) Prior Publication Data
US 2011/0145476 A1 Jun. 16, 2011 Primary Examiner — Gary Portka
(74) Attorney, Agent, or Firm — Dorsey & Whitney LLP
(51) Imnt.ClL
GO6F 12/02 (2006.01) (57 ABSTRACT
GO6F 9/50 (2006.01) Applications may request persistent storage in nonvolatile
G1IC 11/56 (2006.01) memory. The persistent storage is maintained across power
G1IC 13/00 (2006.01) events and application instantiations. Persistent storage may
G1IC 16/04 (2006.01) be maintained by systems with or without memory manage-
GIlIC 15/04 (2006.01) ment units.
(52) US.CL
CPC GOG6F 9/5016 (2013.01); G11C 11/5621 21 Claims, 6 Drawing Sheets

[PTR=NVMALLOC(SIZE, KEY,PERSISTENCE QUALIFIER)],/-501

506,

ARE SIZES
EQUAL?

y v 7~ 510
CLEAR KEY ENTRY,

RELEASE CORRRESPONDING

PERSISTENT MEMORY BLOCK

MEMORY
AVAILABLE?

y 518

RESERVE PERSISTENT MEMORY

BLOCK, ADD KEY ENTRY, STORE
PERSISTENCE QUALIFIER

v 7~ 530
RETURN POINTER

US 9,128,762 B2

Sheet 1 of 6

Sep. 8, 2015

U.S. Patent

00/

25 W0d 85T HSYT4 DTN aNVN
057 woy 9T HSYTH 075 ONWN
TSI WY PCT HSV1H HON
N
GLL AHOWAW WILSAS
COF FOV4YLNI I DL]
-t ' WYY ‘HSYTH ‘Wod “Ba
“ TNOILLO “ AHOW3IW 03aa3an3 —
L whm) — e
L LINA INGWIOYNYA ! 087 3409 AN0J3S < > %%ww\o_s
L Adonan ! :
e e e e e e e e 1
VY 'HSYTd ‘Wod “bro o
AYOWIN 03033
_ YNNILNY
011 40SS3004d T 2500 LS5l

U.S. Patent Sep. 8, 2015 Sheet 2 of 6 US 9,128,762 B2

APP1KEY | APP1SIZE | APP1PIR

APP2KEY | APP2SIZE | APP2PIR

PERSISTENT APP3KEY | APP3SIZE | APP3PIR
MEMORY STATE -+

210

APPnKEY | APPnSIZE | APPnPIR

APPLICATION 1 PERSISTENT DATA

220 A
APPLICATION 2 PERSISTENT DATA
230
APPLICATION 3 PERSISTENT DATA
240
[]
[]
[]
APPLICATION n PERSISTENT DATA
250

\ NONVOLATILE
FIG. 2 MEMORY 200

U.S. Patent Sep. 8, 2015 Sheet 3 of 6 US 9,128,762 B2

[PTR=NVMALLOC(SIZE, KEY)],301

302
Y ISKEY N

PRESENT?

306

ARE SIZES

Eouy

Y A 4 310

CLEAR KEY ENTRY,
RELEASE CORRRESPONDING
PERSISTENT MEMORY BLOCK

Y

M. X

Y MEMORY
AVAILABLE?

38
RESERVE PERSISTENT
MEMORY BLOCK,

ADD KEY ENTRY FL

[~ 316

»
L

v 3%
RETURN POINTER

\ 300

FIG. 3

U.S. Patent Sep. 8, 2015 Sheet 4 of 6 US 9,128,762 B2
([apprkey | app1size | APP1PQUAL | APPIPTR
APP2KEY | APP2SIZE | APP2PQUAL | APP2PTR
PERSISTENT APP3KEY | APP3SIZE | APP3PQUAL | APP3PTR
MEMORY STATE
410 .
[]
[]
\ APPIKEY | APPnSIZE | APPnPQUAL | APPnPTR
FIG. 4
FREEZE APP)
MIGRATE PAGES | - 749 MIGRATEPAGE | - 810
TONV MEM TABLES TORAM
I I
LOCK PAGE TABLE | ~ 720 RUN APP FROM
RAMWITH
| PERSISTENT L~ 820
STORAGE

TABLESTO
NV MEM

AN

FIG. 7

700

\

FIG. 8

800

U.S. Patent

506

Sep. 8, 2015

Sheet 5 of 6

US 9,128,762 B2

[PTR=NVMALLOC(SIZE, KEY,PERSISTENCE QUALIFIER)]/501

502
Y ISKEY N

ARE SIZES

Eouy

Y

PRESENT?

\ 4 [~ 510
CLEAR KEY ENTRY,
RELEASE CORRRESPONDING
PERSISTENT MEMORY BLOCK
| .
514, X
Y MEMORY
r~ 518

RESERVE PERSISTENT MEMORY
BLOCK, ADD KEY ENTRY, STORE
PERSISTENCE QUALIFIER

»
L

v [~ 530
RETURN POINTER

FIG. 5

AVAILABLE?

~ 516

FAIL

\ 500

U.S. Patent Sep. 8, 2015 Sheet 6 of 6 US 9,128,762 B2

1
:
i RAM
! KERNEL L~ 610
1
:
KERNEL -~ 610 :
: PAGE | - g12
! TABLE 1 622
1
: (:;)
PAGE 1~ 612 PAGE |- 614 | PAGE | - 414
TABLE 1 TABLE 2 ! TABLE 2 642
1
: S
! 650
APP 1 APP 2 APP :
3 ! NV MEM
' STATE L~ 410
1
@| GO
622 632 62 | PAGE | gy 2
1 L/~
TABLE 1
S S S 622
620 630 640 i PAGE |~ 614
! TABLE 2
1
: 642
: S
] 660
1
1
VIRTUAL MEMORY ' PHYSICAL MEMORY

FIG. 6

US 9,128,762 B2

1
PERSISTENT CONTENT IN NONVOLATILE
MEMORY

FIELD

The present invention relates generally to data storage in
memory devices, and more specifically to data storage in
nonvolatile memory.

BACKGROUND

Many electronic devices store data in both volatile memory
and nonvolatile memory. Volatile memory is memory that
loses stored information when power is lost, while nonvola-
tile memory is memory that retains information even when
power is lost. Volatile memory such as random access
memory (RAM) is generally faster than nonvolatile memory
such as FLASH memory. As small inexpensive electronic
devices (e.g., cell phones, smartphones, media players)
become more feature packed, the desire for increased
memory resources has also grown.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example and not limitation in the figures of the accompanying
drawings, in which like reference numerals indicate similar
elements and in which:

FIG. 1 shows an electronic system in accordance with
various embodiments of the invention;

FIG. 2 shows persistent data storage in nonvolatile memory
in accordance with various embodiments of the invention;

FIG. 3 shows a flow diagram in accordance with various
embodiments of the present invention;

FIG. 4 shows the state of persistent data storage in accor-
dance with various embodiments of the invention;

FIG. 5 shows a flow diagram in accordance with various
embodiments of the present invention;

FIG. 6 shows contents of virtual and physical memory in
accordance with various embodiments of the present inven-
tion; and

FIGS. 7 and 8 show flow diagrams in accordance with
various embodiments of the present invention.

DESCRIPTION OF EMBODIMENTS

Embodiments of the invention provide a method and sys-
tem for utilizing nonvolatile memory for persistent data stor-
age. Application programs can request that data objects be
made persistent by storing them in nonvolatile memory. Some
embodiments include virtual memory, and other embodi-
ments do not include virtual memory.

FIG. 1 shows a system 100 in accordance with various
embodiments of the invention. System 100 may be any type
of system with memory. For example, system 100 may be a
mobile phone with volatile and nonvolatile memory. Also for
example, system 100 may be a global positioning system
(GPS) receiver or a portable media player with volatile and
nonvolatile memory. Another example of system 100 is a
computing device such as a server, desktop PC, notebook,
netbook, or computing appliance. System 100 may be any
type of device without departing from the scope ofthe present
invention.

In some embodiments, system 100 has a wireless interface
120. Wireless interface 120 is coupled to antenna 114 to allow
system 100 to communicate with other over-the-air commu-
nication devices. As such, system 100 may operate as a cel-

10

15

20

25

30

35

40

45

50

55

60

65

2

Iular device or a device that operates in wireless networks
such as, for example, Wireless Local Area Networks
(WLANSs), WiMax and Mobile WiMax based systems, Wide-
band Code Division Multiple Access (WCDMA), and Global
System for Mobile Communications (GSM) networks, any of
which may or may not operate in accordance with one or more
standards. The various embodiments of the invention are not
limited to operate in the above network types; this is simply a
list of examples. It should be understood that the scope of the
present invention is not limited by the types of, the number of,
or the frequency of the communication protocols that may be
used by system 100. Embodiments are not, however, limited
to wireless communication embodiments. Other non-wire-
less applications can use the various embodiments of the
invention.

System 100 includes processor 110 coupled to interface
105. Interface 105 provides communication between proces-
sor 110 and the various other devices coupled to interface
105. For example, processor 110 may communicate with
memory devices in system memory 115, as well as disk 170.
Interface 105 can include serial and/or parallel buses to share
information along with control signal lines to be used to
provide handshaking between processor 110 and the various
other devices coupled to interface 105.

System memory 115 may include one or more different
types of memory and may include both volatile (e.g., random
access memory (RAM) 151) and nonvolatile memory (e.g.,
read only memory (ROM) 150, phase change memory (PCM)
152, NOR FLASH memory 154, NAND single level cell
(SLC) memory 156, and NAND multi-level cell (MLC)
memory 158). These memory types are listed as examples,
and this list is not meant to be exclusive. For example, some
embodiments may include Ovonic Unified Memory (OUM),
Chalcogenide Random Access Memory (C-RAM), Magnetic
Random Access Memory (MRAM), Ferroelectric Random
Access Memory (FRAM), Static Random Access Memory
(SRAM), Dynamic Random Access Memory (DRAM), or
any other type of storage device.

Processor 110 includes at least one core 160, 180, and each
core may include memory. For example, first core 160 may
include volatile or nonvolatile memory such as PCM,
FLASH, or RAM. Each core may include any combination of
different types of memory without departing from the scope
of the present invention. Processor 110 may execute instruc-
tions from any suitable memory within system 100. For
example, any of the memory devices within system memory
115 may be considered a computer-readable medium that has
instructions stored that when accessed cause processor 110 to
perform embodiments of the invention.

In some embodiments, processor 110 also includes an inte-
gral memory management unit (MMU) 130. In some embodi-
ments, MMU 130 is a separate device. Memory management
unit 130 is a hardware device or circuit that is responsible for
handling accesses to memory requested by processor 110.
When present, memory management unit 130 supports vir-
tual memory and paging by translating virtual addresses into
physical addresses.

Nonvolatile memory present in system 100 may provide
persistent storage for applications. For example, NOR
FLASH memory 154 or PCM memory 152 may be used to
store data that remains persistent between instantiations of a
software application. In various embodiments of the present
invention, an application can request persistent storage for
data that it wishes to remain persistent. For example, a web
browser application may request persistent storage for state

US 9,128,762 B2

3

data such as viewing history. Once an application requests
persistent storage, any data may be stored in the persistent
storage.

In some embodiments, persistent storage in nonvolatile
memory is available to applications each time they start up.
For example, persistent storage may be available to an appli-
cation across instantiations of the applications as well as
across power events.

FIG. 2 shows persistent data storage in nonvolatile memory
in accordance with various embodiments of the invention.
Nonvolatile memory 200 may be any type of nonvolatile
memory. For example, in some embodiments, memory 200 is
PCM memory, and in other embodiments, memory 200 is
FLASH memory.

Nonvolatile memory 200 includes persistent data storage
for any number of applications, shown as “n” in FIG. 2. A first
application (Application 1) has persistent data stored at 220,
a second application (Application 2) has persistent data
stored at 230, and a third application (Application 3) has
persistent data storage at 240. The n™ application has persis-
tent data storage at 250. Nonvolatile memory 200 also
includes a data structure describing the persistent memory
state 210. For each application with persistent data storage,
persistent memory state 210 includes a record that includes at
least three fields: a key, a size, and a pointer. For example, the
persistent memory state record for application 1 includes App
1key, App1 size, and App 1 ptr. App1 key is a unique identifier
that allows Application 1 to be associated with the persistent
storage at 220. App 1 size is the size of the persistent storage
at 220. App 1 ptr is a pointer that points to the persistent
storage at 220.

In operation, an application can request persistent storage.
When persistent storage is first requested, a persistent storage
block (e.g., 220) is allocated, and a record is added to persis-
tent memory state 210 to associate the persistent memory
block with the requesting application. If the application
already has persistent storage, then the appropriate record in
persistent memory state 210 is found, and the application can
access the persistent storage through the pointer.

In some embodiments, an application programming inter-
face (API) is provided to allow applications to request persis-
tent data storage. For example, a nonvolatile memory alloca-
tion routine may be provided that accepts a key and a size and
returns a pointer. This nonvolatile memory allocation routine
may take the following form:

ptr=nvmalloc(size, key)

where the calling application provides the key and the size,
and the API returns the pointer. Each application has a unique
key that it uses when requesting persistent storage. The appli-
cation passes the unique key and the desired size of the
persistent storage to the nvmalloc routine, and the nvmalloc
routine returns a pointer to the persistent storage. Ifthe calling
application does not yet have a persistent storage area, then
one is allocated, and a pointer to the newly allocated persis-
tent storage area is returned. If the calling application does
have a persistent storage area (e.g., when an application is
being run subsequent to a previous call to nvmalloc), then the
existence of the persistent storage is verified and the pointeris
returned.

In various embodiments of the invention, an application
can choose to store some data in persistent storage, and some
data elsewhere. In some embodiments, a call to nvmalloc
forces the system to use nonvolatile memory whereas a call to
a different memory allocation routine (e.g., malloc) allows
the system to determine where to provide storage. Providing
this level of control to applications allows the applications to

10

15

20

25

30

35

40

45

50

55

60

65

4

store and access data with the knowledge that this data will be
accessible from one instantiation to another, and also across
power events.

Although the return value (ptr) is described above as a
pointer, this is not a limitation of the present invention. Any
type of reference may be returned or updated to provide
access to allocated persistent storage. For example, an object
of'a different type may be returned. Also for example, in some
embodiments, an application may pass a local, global, or
static variable along with the size request, and the variable
may be updated with a reference to the allocated persistent
storage.

FIG. 3 shows a flow diagram in accordance with various
embodiments of the invention. In some embodiments,
method 300, or portions thereof, is performed by a processor
executing software that manages persistent data storage in
nonvolatile memory. For example, method 300 may represent
the nvmalloc routine described above with reference to FIG.
2. Method 300 is not limited by the particular type of appa-
ratus performing the method. The various actions in method
300 may be performed in the order presented, or may be
performed in a different order. Further, in some embodiments,
some actions listed in FIG. 3 are omitted from method 300.

Method 300 is shown being invoked at 301 as ptr=nvmalloc
(size, key). It should be understood that the term “nvmalloc”
is provided as a convenient label for the purpose of explana-
tion, and that embodiments of method 300 may be referred to
using any suitable label or name. Likewise, it should be
understood that the passed parameters are not necessarily
limited to a size and a key. Any number or type of parameters
may be passed by an application requesting persistent
memory. Further, method 300 is shown returning a pointer to
the persistent memory, although this is not a limitation of the
present invention. Any suitable mechanism for referencing
the persistent memory may be utilized. For example, the
calling application may receive a persistent object from
method 300 to point to the persistent memory.

At 302, method 300 examines the key provided by the
calling application to determine if the key is present. This
corresponds to determining if one of the key entries in per-
sistent memory state 210 (FIG. 2) includes the key. If the key
is not present, then the calling application does not currently
have persistent memory allocated. In this case, method 300
continues at 314 to determine if enough nonvolatile memory
is available to satisfy the size request. If not, then method 300
ends at 316 and the persistent memory request fails. In some
embodiments, this may result in the nvmalloc routine return-
ing a null pointer or otherwise informing the calling applica-
tion of the failure.

If method 300 determines that memory is available at 314,
then a persistent memory block is reserved and a key entry is
added at 318. This corresponds to a nonvolatile block of
memory (e.g., 220, FIG. 2) being reserved, and a key entry
being added to persistent memory state 210. The key entry
includes the unique key, the size of the memory block, and a
pointer to the memory block. At 330, the pointer to the
memory block is returned to the calling application.

If at 302, method 300 determines that the key is already
present in a key entry in persistent memory state 210, then the
sizes are compared at 306. The size parameter passed from the
calling routine is compared to the size stored in the key entry.
If they are different, then there is a mismatch in size between
the currently allocated persistent memory and the size
expected by the calling application. The response is to clear
the existing key entry and release the corresponding persis-

US 9,128,762 B2

5

tent memory block at 310. The method then continues at 314
to allocate a new persistent memory block as described in the
previous paragraphs.

The persistent memory allocation described above with
reference to FIGS. 2 and 3 may exist in systems with or
without virtual memory. For example, in some embodiments,
a system 100 (FIG. 1) that includes a memory management
unit 130 may implement persistent memory in accordance
with FIGS. 2 and 3. Further, in other embodiments, a system
100 (FIG. 1) that does not include a memory management
unit 130 may implement persistent memory in accordance
with FIGS. 2 and 3.

In contrast, the persistent memory allocation described
below with reference to FIGS. 4-6 exists in systems that are
able to manage memory in the background. For example, a
system 100 (FIG. 1) that includes a memory management unit
130 may implement persistent memory in accordance with
FIGS. 4-6.

FIG. 4 shows the state of persistent storage in nonvolatile
memory in accordance with various embodiments of the
invention. Persistent memory state 410 is maintained in non-
volatile memory. The persistent storage that corresponds to
entries in persistent memory state 410 is not shown in FIG.
400, because it may be maintained in one or more locations in
either or both of volatile and/or nonvolatile memory as
described further below.

Persistent memory state 410 is a data structure that
includes a record for each allocated persistent memory block.
Persistent memory state 410 may maintain records for any
number of applications, shown as “n” in FIG. 4. For each
application with persistent data storage, persistent memory
state 410 includes a record that includes at least four fields: a
key, a size, a persistence qualifier, and a pointer. For example,
the persistent memory state record for application 1 includes
App 1 key, App 1 size, App 1 pqual, and App 1 ptr. Appl key
is a unique identifier that allows Application 1 to be associ-
ated with its allocated persistent storage. App 1 size is the size
of'the persistent storage. App 1 pqual is a persistence qualifier
that provides guidance to the system on how to manage the
persistent storage. And App 1 ptr is a pointer that points to the
persistent storage.

In operation, an application can request persistent storage
with a particular persistence qualifier. When persistent stor-
age is first requested, a persistent storage block is allocated,
and a record is added to persistent memory state 410 to
associate the persistent memory block with the requesting
application. If the application already has persistent storage,
then the appropriate record in persistent memory state 410 is
found, and the application can access the persistent storage
through the pointer.

In some embodiments, an application programming inter-
face (API) is provided to allow applications to request persis-
tent data storage with a persistence qualifier. For example, a
nonvolatile memory allocation routine may be provided that
accepts a key, a size, and a persistence qualifier, and returns a
pointer. This nonvolatile memory allocation routine may take
the following form:

ptr=nvmalloc(size, key, persistence qualifier)

where the calling application provides the key, the size, and
the persistence qualifier; and the API returns the pointer. Each
application has a unique key that it uses when requesting
persistent storage. The application passes the unique key and
the desired size of the persistent storage along with the per-
sistence qualifier to the nvmalloc routine, and the nvmalloc
routine returns a pointer to the persistent storage. Ifthe calling
application does not yet have a persistent storage area, then

10

15

20

25

30

35

40

45

50

55

60

65

6

one is allocated, and a pointer to the newly allocated persis-
tent storage area is returned. If the calling application does
have a persistent storage area (e.g., when an application is
being run subsequent to a previous call to nvmalloc), then the
existence of the persistent storage is verified and the pointeris
returned.

The persistence qualifier is used to specity the type or
“degree” of persistence that is desired by the calling applica-
tion. These persistence qualifiers are interpreted by systems
with memory management units when determining how to
manage persistent memory. For example, and not by way of
limitation, valid persistence qualifiers may include DIREC-
TIO; WRITEBACK; WRITETHROUGH; and ATOMIC.

The DIRECTIO persistence qualifier directs the system to
read and write directly to the persistent storage in nonvolatile
memory. Neither read nor write caches are maintained in
volatile memory.

The WRITEBACK persistence qualifier directs the system
to write to volatile memory and then migrate the data to
nonvolatile memory as time permits. Both read and write
caches may be maintained in volatile memory.

The WRITETHROUGH persistence qualifier directs the
system to write to both volatile and nonvolatile memory. Read
caches may be maintained, but write caches are not because
writes are always made to the nonvolatile memory. Examples
of persistent memory blocks with different persistence quali-
fiers are described with reference to later figures.

The ATOMIC persistence qualifier directs the system to
write to volatile memory until a command is given to flush it
down, such as from a special APL, such as sync(key). When
the system receives such a command it updates the nonvola-
tile memory object referenced by ‘key’ as an atomic unit. If
the data fails to write to the nonvolatile memory in its entirety
the system will revert the object to its state before the write
started.

FIG. 5 shows a flow diagram in accordance with various
embodiments of the present invention. In some embodiments,
method 500, or portions thereof, is performed by a processor
executing software that manages persistent data storage in
nonvolatile memory. Method 500 is not limited by the par-
ticular type of apparatus performing the method. The various
actions in method 500 may be performed in the order pre-
sented, or may be performed in a different order. Further, in
some embodiments, some actions listed in FIG. 5 are omitted
from method 500.

Method 500 is shown beginning at 501 with a call to an
nvmalloc routine. This nvmalloc routine is similar to the
nvmalloc routine described above with reference to FIGS. 2
and 3 with the exception that a persistence qualifier is passed
from the calling program.

At 502, method 500 examines the key provided by the
calling application to determine if the key is present. This
corresponds to determining if one of the key entries in per-
sistent memory state 410 (FIG. 4) includes the key. If the key
is not present, then the calling application does not currently
have persistent memory allocated. In this case, method 500
continues at 514 to determine if enough nonvolatile memory
is available to satisfy the size request. If not, then method 500
ends at 516 and the persistent memory request fails. In some
embodiments, this may result in the nvmalloc routine return-
ing a null pointer or otherwise informing the calling applica-
tion of the failure.

If method 500 determines that memory is available at 514,
then a persistent memory block is reserved and a key entry is
added at 518. This corresponds to a nonvolatile block of
memory being reserved, and a key entry being added to per-
sistent memory state 410. The key entry includes the unique

US 9,128,762 B2

7

key, the size of the memory block, the persistence qualifier,
and a pointer to the memory block. At 530, the pointer to the
memory block is returned to the calling application.

If at 502, method 500 determines that the key is already
present in a key entry in persistent memory state 410, then the
sizes are compared at 506. The size parameter passed from the
calling routine is compared to the size stored in the key entry.
Ifthey are different, then there is a mismatch in size between
the currently allocated persistent memory and the size
expected by the calling application. The response is to clear
the existing key entry and release the corresponding persis-
tent memory block at 510. The method then continues at 514
to allocate a new persistent memory block as described in the
previous paragraphs.

FIG. 6 shows contents of virtual and physical memory in
accordance with various embodiments of the present inven-
tion. The left side of FIG. 6 shows an operating system kernel
610, page tables 612, 614, and three applications 620, 630,
and 640, each with allocated persistent memory 622, 632, and
642. The left side is labeled “virtual memory” because there
is no distinction between what type of memory each block is
held in. This is invisible to the applications, as it is handled by
the memory management unit.

Application 620 (APP1) has persistent storage 622 allo-
cated as WRITEBACK (WB); application 630 (APP2) has
persistent storage 632 allocated as DIRECTIO (DIO); and
application 640 (APP4) has persistent storage 642 allocated
as WRITETHROUGH (WT). This corresponds to a system
with a persistent memory state 410 (FIG. 4) in which the
persistence qualifiers for the first three applications are set to
WRITEBACK, DIRECTIO, and WRITETHROUGH,
respectively.

The right side of FIG. 6 shows how the various items are
stored in physical memory. Kernel 610 is typically in volatile
memory 650 (e.g., RAM) as shown, although this is not a
limitation of the present invention. Persistent memory state
410 is stored in nonvolatile memory 660. Because the persis-
tent memory state 410 is stored in nonvolatile memory, the
state is persistent across power events and application instan-
tiations.

The persistent storage blocks requested by, and allocated
to, the applications are stored in one or both of the volatile
and/or nonvolatile memory as follows. Application 620
requested persistent storage with a persistence qualifier of
WRITEBACK. As a result, writes are performed to volatile
memory 650, and the memory manager copies it from volatile
memory 650 to nonvolatile memory 660 as time permits.
Accordingly, persistent storage 622 is shown in both volatile
memory 650 and nonvolatile memory 660. Application 630
requested persistent storage with a persistence qualifier of
DIRECTIO. As a result, writes are performed directly to
nonvolatile memory 660. Accordingly, persistent storage 632
is shown only in nonvolatile memory 660. Application 640
requested persistent storage with a persistence qualifier of
WRITETHROUGH. As a result, writes are always performed
to both volatile memory 650 and nonvolatile memory 660.
Accordingly, persistent storage 642 is shown in both volatile
memory 650 and nonvolatile memory 660.

Page tables 612 and 614 are shown in both volatile memory
650 and nonvolatile memory 660, although this is not a limi-
tation of the present invention. For example, page tables may
be in only of volatile memory 650 or nonvolatile memory 660.

In some embodiments, page tables are maintained in vola-
tile memory while applications are running, and are migrated
to nonvolatile memory when the application is frozen. For
example, an application on a mobile phone may go dormant
through non-use. The application can be shut down so that it

10

15

20

25

30

35

40

45

50

55

60

65

8

requires a complete restart the next time it is used, or the
application can be frozen so that it can be quickly revived
when next used.

FIGS. 7 and 8 show flow diagrams in accordance with
various embodiments of the present invention. Method 700
shows that an application with persistent storage can be fro-
zen by migration of page tables. At 710, any pages of persis-
tent storage that are not already in nonvolatile memory are
migrated to nonvolatile memory. For example, persistence
storage with a persistence qualifier of WRITEBACK may
have pages in volatile memory. These pages are migrated to
nonvolatile memory at 710. At 720, the page tables are
locked. At this point, the page tables reference only pages in
nonvolatile memory, and the page tables are locked so that
they can not be modified. At 730, the locked page tables are
migrated to nonvolatile memory. After 730, all persistent
storage and associated page tables are resident in nonvolatile
memory, and the application can be considered frozen. Power
can be turned off and no persistent data will be lost.

Method 800 shows that the same application can be
revived, or “unfrozen.” At 810, the page tables are migrated
back to volatile memory, and at 820, the application is run
from volatile memory while the persistent storage is left in
nonvolatile memory. This is possible because the page tables
were updated to reference the persistent storage in nonvolatile
memory before they were migrated to nonvolatile memory
themselves.

In some embodiments, page tables are not migrated back to
volatile memory. For example, at 820, the application may be
run in volatile memory while the both the page tables and the
persistent storage is left in nonvolatile memory.

Unless specifically stated otherwise, as apparent from the
preceding discussions, it is appreciated that throughout the
specification discussions utilizing terms such as “monitor-
ing,” “storing,” “detecting,” “using,” “identifying,” “mark-
ing,” “receiving,” “loading,” “reconfiguring,” “formatting,”
“determining,” or the like, refer to the action and/or processes
of a computer or computing system, or similar electronic
computing device, that manipulate and/or transform data rep-
resented as physical, such as electronic, quantities within the
computing system’s registers and/or memories into other data
similarly represented as physical quantities within the com-
puting system’s memories, registers or other such informa-
tion storage, transmission or display devices.

Embodiments of the invention may include apparatuses for
performing the operations herein. An apparatus may be spe-
cially constructed for the desired purposes, or it may com-
prise a general purpose computing device selectively acti-
vated or reconfigured by a program stored in the device. Such
a program may be stored on a storage medium, such as, but
not limited to, any type of disk including floppy disks, optical
disks, compact disc read only memories (CD-ROMs), mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), electrically programmable read-
only memories (EPROMs), electrically erasable and pro-
grammable read only memories (EEPROMs), magnetic or
optical cards, or any other type of media suitable for storing
electronic instructions, and capable of being coupled to a
system bus for a computing device.

Various general purpose systems may be used with pro-
grams in accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus to
perform the desired method. The desired structure for a vari-
ety of these systems appears in the description above. In
addition, embodiments of the invention are not described with
reference to any particular programming language. A variety
of programming languages may be used to implement the

2 <

US 9,128,762 B2

9

teachings of the invention as described herein. In addition, it
should be understood that operations, capabilities, and fea-
tures described herein may be implemented with any combi-
nation of hardware (discrete or integrated circuits) and soft-
ware.

Although the present invention has been described in con-
junction with certain embodiments, it is to be understood that
modifications and variations may be resorted to without
departing from the scope of the invention as those skilled in
the art readily understand. Such modifications and variations
are considered to be within the scope of the invention and the
appended claims.

What is claimed is:

1. A system comprising:

a nonvolatile memory;

a volatile memory;

a processor coupled to the nonvolatile memory and the

volatile memory; and

a memory management component having an application

programming interface (API) that includes a nonvolatile
memory allocation routine configured to allocate a por-
tion of the nonvolatile memory as persistent storage
across instantiations of an application in accordance
with a persistence qualifier that is provided to the non-
volatile memory allocation routine;

wherein the persistence qualifier is indicative of a type of

persistence desired by the application.

2. The system of claim 1, wherein the nonvolatile memory
allocation routine maintains a data structure configured to
associate persistent storage to each application.

3. The system of claim 1, wherein the nonvolatile memory
comprises phase change memory (PCM).

4. The system of claim 1, wherein the nonvolatile memory
comprises FLASH memory.

5. The electronic system of claim 1, wherein the memory
allocation routine is substantially of the form ptr=nvmalloc
(size, key), wherein nvmalloc is nonvolatile memory alloca-
tion, size is a requested size, key is unique to the calling
application, and ptr is a reference returned to the calling
application.

6. The electronic system of claim 1, wherein the memory
allocation routine is configured to migrate page tables
between the volatile memory and the non-volatile memory.

7. The electronic system of claim 1, wherein the memory
allocation routine is substantially of the form ptr=nvmalloc
(size, key, the persistence qualifier), wherein nvmalloc is
nonvolatile memory allocation, size is a requested size, key is
unique to the calling application, the persistence qualifier is
an option to guide the memory management component when
maintaining the persistent storage in at least one of the non-
volatile memory or the volatile memory, and ptr is a reference
returned to the calling application.

8. The electronic system of claim 1, wherein the electronic
system comprises a mobile phone.

9. The electronic system of claim 1, wherein the electronic
system comprises a mobile device.

10. A method, comprising:

receiving a request from an application for nonvolatile

memory allocation, the request including a persistence
qualifier indicative of a type of persistence desired by the
application;

determining ifthe application is associated with previously

allocated nonvolatile memory;

if the application is associated with previously allocated

nonvolatile memory, returning a reference to the previ-
ously allocated nonvolatile memory;

10

15

20

25

35

40

45

50

55

60

65

10

if the application is not associated with previously allo-
cated nonvolatile memory, allocating, using a nonvola-
tile memory allocation routine, nonvolatile memory
according to the request and the persistence qualifier;
and

migrating page tables to nonvolatile memory responsive, at

least in part, to the application becoming dormant.

11. The method of claim 10, further comprising:

managing reads and writes of the nonvolatile memory in

accordance with the persistence qualifier.

12. The method of claim 11, wherein the persistence quali-
fier specifies whether writes to the nonvolatile memory can be
cached in volatile memory.

13. The method of claim 11, wherein the persistence quali-
fier specifies whether reads from the nonvolatile memory can
be cached in volatile memory.

14. The method of claim 10, wherein the nonvolatile
memory comprises the previously allocated nonvolatile
memory and wherein the page tables reference persistent
storage in the nonvolatile memory.

15. The method of claim 10, further comprising:

executing an application while the page tables are in non-

volatile memory.

16. A non-transitory computer-readable medium having
instructions encoded thereon that when accessed result in the
machine performing:

receiving a request from an application for nonvolatile

memory allocation, the request including a persistence
qualifier indicative of atype of persistence desired by the
application;

determining if'the application is associated with previously

allocated nonvolatile memory;

if the application is associated with previously allocated

nonvolatile memory, returning a reference to the previ-
ously allocated nonvolatile memory;

if the application is not associated with previously allo-

cated nonvolatile memory, allocating, using a nonvola-
tile memory allocation routine, nonvolatile memory
according to the request and the persistence qualifier;
and

migrating page tables to nonvolatile memory responsive, at

least in part, to the application becoming dormant.

17. The non-transitory computer-readable medium of
claim 16, wherein the instructions when accessed further
result in the machine performing:

managing a read, write, or combination thereof, of the

nonvolatile memory according to the persistence quali-
fier.

18. The non-transitory computer-readable medium of
claim 17, wherein the persistence qualifier specifies whether
writes to nonvolatile memory can be cached in volatile
memory.

19. The non-transitory computer-readable medium of
claim 17, wherein the persistence qualifier specifies whether
reads from nonvolatile memory can be cached in volatile
memory.

20. The non-transitory computer-readable medium of
claim 16, wherein the page tables reference persistent storage
in the nonvolatile memory.

21. The system of claim 1, wherein the memory allocation
routine includes at least one option to maintain the persistent
storage in both the nonvolatile memory and volatile memory.

#* #* #* #* #*

